翻訳と辞書 |
Andronov–Pontryagin criterion : ウィキペディア英語版 | Andronov–Pontryagin criterion The Andronov–Pontryagin criterion is a necessary and sufficient condition for the stability of dynamical systems in the plane. It was derived by Aleksandr Andronov and Lev Pontryagin in 1937. ==Statement==
A dynamical system : where ''v'' is a ''C''1-vector field on the plane, ''x''∈R2, is orbitally topologically stable if and only if the following two conditions hold: # All equilibrium points and periodic orbits are ''hyperbolic''. # There are no ''saddle connections''. The same statement holds if the vector field ''v'' is defined on the unit disk and is transversal to the boundary.
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Andronov–Pontryagin criterion」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|